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Three discriminative representations for face presentation attack detection are introduced in this paper. 

Firstly we design a descriptor called spatial pyramid coding micro-texture (SPMT) feature to characterize 

local appearance information. Secondly we utilize the SSD, which is a deep learning framework for de- 

tection, to excavate context cues and conduct end-to-end face presentation attack detection. Finally we 

design a descriptor called template face matched binocular depth (TFBD) feature to characterize stereo 

structures of real and fake faces. For accurate presentation attack detection, we also design two kinds of 

representation combinations. Firstly, we propose a decision-level cascade strategy to combine SPMT with 

SSD. Secondly, we use a simple score fusion strategy to combine face structure cues (TFBD) with local 

micro-texture features (SPMT). To demonstrate the effectiveness of our design, we evaluate the represen- 

tation combination of SPMT and SSD on three public datasets, which outperforms all other state-of-the- 

art methods. In addition, we evaluate the representation combination of SPMT and TFBD on our dataset 

and excellent performance is also achieved. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In recent years, face recognition based identity authentication

systems [1,2] are popular. However, similar to other biometric

modalities [3,4] , security risks hide in the system. Many authen-

tication systems can’t judge whether faces are captured from au-

thorized clients or from presentation attacks. 

There are various presentation attacks, for example, prints, pho-

tographs, videos displayed on screens and 3D models such as face

masks [5] . Images or videos of an authorized user can be easily

obtained from Internet or by portable cameras. 2D fake faces are

cheap to make, but 3D masks are expensive to build and are rare

in real applications. Hence in this paper, we focus on 2D presenta-

tion attacks including prints, photos and videos. As shown in Fig. 1 ,

telling real faces is difficult even for humans. Consequently, robust

presentation attack detection (PAD) methods are needed. 

Recently, several state-of-the-art face PAD methods are pro-

posed. Wen et al [6] . utilize image distortion analysis for presenta-

tion attack detection. Boulkenafet et al [7] . regard micro-texture in

color space as the vital cue for presentation attack detection. Yang

et al [8] . design a person-specific model for presentation attack de-

tection and Patel et al [9] . defend presentation attacks based on
∗ Corresponding author. 
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onvolutional neural networks. More related works are illustrated

n Section 2 . 

Recaptured images lose some high-frequency information [10–

2] because of limited resolution and gaussian blurring. Appear-

nce is also changed due to the abnormal shading on re-imaged

urfaces. Furthermore, printing artifacts or noise signatures in cap-

ured videos [13,14] also exist. Consequently, micro-texture is a

elpful cue for discriminating the appearance of real face and fake

ace. 

Another helpful cue for presentation attack detection is the

tereo structure of face. A fake face displayed on a screen can-

ot mimic the structure of a real face [15] because the screen is

lways planar. In addition, a printed fake face cannot mimic the

igid structure of a real face by any operations. Hence recovering

ace stereo structure is beneficial for face liveness judgment. 

Recently convolutional neural network (CNN) based methods

chieve excellent performance in many computer vision tasks, such

s object detection [16] . Deep representations extracted from con-

olutional neural network are with rich semantical information.

ence utilizing the deep network for face presentation attack de-

ection is appropriate. 

In this paper, we propose two kinds of representation combina-

ions for face presentation attack detection. We demonstrate that

oth of them achieve excellent performance for face PAD task. The

rst one combines SPMT with SSD, because local appearance de-

criptors and global context cues are proven complementary. The

https://doi.org/10.1016/j.patcog.2018.08.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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Fig. 1. (a) From top to bottom, NUAA, CASIA and REPLAY-ATTACK datasets, from left 

to right, real face, fake face and Fisher face. (b) We randomly select 200 real faces 

and 200 video attack frames from REPLAY-ATTACK. Pixel vectors in facial regions 

are hard to distinguish. 
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econd one combines SPMT with TFBD, in which stereo structure

ues are exploited and combined with 2D appearance features.

ased on our design, two effective solutions for face PAD task is

btained. 

The first representation combination only needs a single image.

irstly, we design a hand-crafted descriptor called SPMT to encode

ocal micro-textures. We propose a spatial pyramid encoding al-

orithm hence SPMT is capable of encoding multi-scale informa-

ion in facial regions. Secondly, we utilize the Single Shot MultiBox

etector (SSD) [16] for end-to-end liveness judgment. As current

AD datasets are relatively small, we reduce the complexity of pre-

iction layers to avoid over-fitting problem. Lastly, we propose a

ecision-level cascade strategy to confirm or correct obscure judg-

ents from SSD. Once the output is regarded uncertain, SPMT de-

criptor is extracted from corresponding facial region to make fur-

her judgment. 

The second representation combination needs a binocular im-

ge pair. We design another hand-crafted descriptor called TFBD

o capture stereo structure’s difference between real face and

ake face. As recovering dense 3D structure is time-consuming,

e choose to recover the sparse face structure based on sparse

acial landmarks using proposed template face registration algo-

ithm. Finally, TFBD descriptor is combined with SPMT descriptor.

he score fusion of two SVM outputs determines the classification

esult. 

In this paper, our main contribution is three-fold. 

(i) We propose the TFBD descriptor with a template face registra-

tion algorithm, and the SPMT descriptor with a spatial pyramid

encoding algorithm. In addition, we are the first to utilize SSD

for face PAD. 

ii) We introduce a complementary representation combination

“SPMT + SSD” for face PAD, and a decision-level cascade strat-

egy. “SPMT + SSD” achieves excellent performance on three

public datasets. 

ii) We also introduce another representation combination “SPMT

+ TFBD” for face PAD, where 2D appearance descriptor is

proven to be complementary with stereo structure cues. 

The rest of this paper is organized as follows. Related work

n face presentation attack detection is reviewed in Section 2 .

he combination of SPMT and SSD is introduced in Section 3 .

he combination of TFBD and SPMT is introduced in Section 4 .

atasets, protocols, evaluation metrics and experimental results are

etailed in Section 5 . Conclusion and future work are illustrated in

ection 6 . 
. Related work 

Despite the multimodal methods [17,18] , most face presentation

ttack detection methods can be divided into five categories: mo-

ion based approaches [19–22] , texture based approaches [7,13,23] ,

tereo structure based approaches [15,24] , deep learning based ap-

roaches [9,25,26] and other approaches [6,27–30] . Research sur-

eys can be found in [23,31] . 

i) Motion based methods aim at capturing biometric motions

such as eye blinking [19,32,33] , mouth movement [34] and

holistic facial motions [21,35] . Given a video clip, Pan et al [32] .

regard eye-blink detection as a state transition problem then

conditional graphical model is used to model different stages.

In [34] , lip movement and lip-reading are treated as critical

cues for presentation attack detection. Bao et al [21] . distin-

guish planar attack with real face based on motion correlation

from optical flow field. Kollreider et al [35] . employ an optical

flow based model and a local Gabor decomposition model for

face motion estimation. However, these challenge-response ap-

proaches require clients’ cooperations and the motion cues for

presentation attack detection can be easily inferred. 

ii) It is demonstrated in [36] that local micro-texture is an use-

ful cue for detecting presentation attacks from re-captured im-

ages or videos. Maatta et al [37] . present a novel micro-texture

descriptor called Multi-Scale Local Binary Patterns (MSLBP) for

face presentation attack detection. Freitas et al . [38] fuse space

with time information into a single descriptor called Local Bi-

nary Patterns from Three Orthogonal Planes (LBPTOP). Recently,

person-specific methods [8,39] are proposed to improve the

generalization ability of micro-texture based algorithms. Zhang

et al [40] . apply the Markov model on color texture features

then conduct recursive feature elimination for face PAD. Boulke-

nafet et al [7] . focus on luminance and chrominance channels

where the joint information of color and texture is exploited.

In [7] , the same authors propose a solution based on describ-

ing the facial appearance by applying Fisher vector encoding on

speeded-up robust features. However micro-texture descriptor

is low-level thus they are sensitive to illumination changes and

images with high quality. 

ii) Stereo structure based methods can be divided into two types:

methods without extra hardware and methods requiring extra

hardware. For the first type, Maria et al [24] . exploit geometric

invariants from a set of automatically located facial landmarks

to estimate face structures. Given an image sequence, Yang et

al [41] . recover the sparse 3D structure from several selected

frames. Another type utilizes the depth information from depth

sensors such as Microsoft Kinect, to reconstruct face structures

[42] . Wang et al [43] . combine depth information from Kinect

with texture features learned from convolutional neural net-

work. However it’s difficult to deploy these presentation attack

detection systems in real applications. In addition stereo cues

may be ineffective when confronting 3D mask attacks. 

v) Rather than designing hand-crafted features for presentation

attack detection, Menotti et al [26] . build a robust PAD system

for iris, face, and fingerprint modalities based on convolutional

neural networks with limited biometric knowledge. Yang et al

[25] . also utilize CNN models to learn deep representations for

face PAD task. Gustavo et al [44] . design the LBPnet, in which

LBP descriptor is integrated in the first layer of a convolutional

neural network then high-level texture features are extracted.

Similarly we also incorporate local descriptors with deep fea-

tures for face PAD task. In addition, to alleviate the problem

of over-fitting, Rehman et al [45] proposes a data randomiza-

tion technique to train CNN classifiers on small-scale face PAD

datasets. Moreover, a cross-dataset face PAD algorithm [9] is
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Fig. 2. Architecture of the representation combination “SPMT + SSD”. The image is only an example and not included in our dataset. The lower part of this figure is an 

illustration of decision-level cascade strategy. SPMT feature is detailed in Fig. 3 . 
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proposed based on a two-stream CaffeNet, however its perfor-

mance is not good. 

v) Context cues are also useful for face PAD. Komulainen et al [46] .

conduct face presentation attack detection by detecting the pre-

sentation attack medium in the scene. Yan et al [28] . fuse mul-

tiple context cues such as background consistency and scene

shift. However, systems based on these simple cues can be eas-

ily cheated hence they are unpractical. 

Methods based on image quality analysis are also popular. Gal-

bally et al [12] . propose an method where image quality metrics

are obtained by evaluating prominent factors among 25 image

quality measures. Inspired by [12] , Wen et al [6] . extract var-

ious image quality representations (specular reflection, blurri-

ness, color diversity) for image distortion analysis and extracted

IDA descriptors characterize the inter-class difference. However,

these methods are not robust and relatively slow. 

Some methods combine different cues mentioned above for

PAD, including our previous work [47] . Pan et al [48] . argue that

the shift of background scene and eye blinking are both impor-

tant. Tronci et al [49] . utilize the joint information of motion,

texture and image quality to perform both sequential and static

liveness analysis. Feng et al [50] . propose a multi-cues integra-

tion framework based on a hierarchical neural network to fuse

image quality cues with motion cues. 

In this paper, we propose the representation combination of

SPMT and SSD to demonstrate the complementarity between local

appearance descriptors and context cues from convolutional neural

network. In addition, we propose the representation combination

of SPMT and TFBD to demonstrate the complementarity between

appearance features and stereo structure cues. Compared with our

previous work [47] , proposed descriptors SPMT and TFBD are mod-

ified and refined. In addition, we are the first to utilize SSD for

face presentation attack detection, and we also propose a strategy

to confirm or correct the obscure liveness judgments. 

3. Representation combination “SPMT + SSD”

The pipeline is shown in Fig. 2 . As can be seen, firstly an in-

put image is fed to SSD. SSD can locate all faces in a single im-

age accurately, meanwhile corresponding labels and confidences

are also provided. Secondly, the uncertainty judgment is applied to

each facial region. For instance, in Fig. 2 , the liveness judgment for

bounding box III is unreliable because its confidence is lower than

a previously set threshold. SPMT feature is extracted from an un-

certain face (such as bounding box III) and the SVM output decides

whether the face is real or not. On the contrary, liveness judgments
or certain facial regions (such as bounding box I and II) can be

sed directly. SPMT descriptor is detailed in Fig. 3 . In this section,

e will introduce SPMT descriptor, SSD configuration for face pre-

entation attack detection and decision-level cascade strategy. 

.1. SPMT Feature 

.1.1. Basic setup 

First of all, facial regions should be properly cropped. There

re two different cropping methods. One method introduced in

his section is designed for “SPMT + SSD” and another introduced in

ection 4 is designed for “SPMT + TFBD”. As mentioned in cascade

trategy, SPMT should be extracted from uncertain facial regions,

hich are simply expanded by a ratio of 1.1 to contain more facial

oundaries that are discriminative as demonstrated in [36] . Then

he expanded facial region is cropped, resized to h f × w f and con-

erted to gray-scale, denoted as F cr . Consistent with [36] , we set h f 
o 120 and w f to 100. 

In addition, Local Binary Pattern (LBP) is adopted as the basic

icro-texture descriptor and LBP p, r denotes p sampled pixels are

n a circular neighborhood with a radius of r . 

.1.2. Fisher face 

Before illustrating encoding method, we would like to introduce

isher face, which plays an important role in high-level micro-

exture encoding process. Yang et al [36] first introduce Fisher ra-

io into presentation attack detection. In our work, we will refer

o their Fisher criterion analysis, meanwhile making some benefi-

ial improvements. Inspired by the point that more discriminative

arts should be highlighted, Fisher ratio is assigned to each posi-

ion in F cr , to characterize the difference of local micro-texture be-

ween real and fake faces. Hence Fisher face F fs owns a same size

s F cr . 

F cr is divided by non-overlapped 10 × 10 blocks, in order to

emain high-frequency information for local difference encoding.

ence, F cr is equivalent to a h f /10 × w f /10 block matrix BM and the

lock matrix preserves the global spatial layout. For each block,

hree kinds of LBP descriptors [37] { LBP u 
8 , 1 

, LBP u 
8 , 2 

, LBP u 
16 , 2 

} are ex-

racted. We concatenate three LBP histograms as a 361 dimensional

ector for each block. Difference of two blocks is calculated by the
2 distance between two vectors. 

One thousand real faces and one thousand fake faces are ran-

omly selected from training set to construct F fs . For block BM i, j ,

hich denotes the block at position ( i, j ), we calculate differences

etween all pairs of BM i, j among selected real faces, then compute

heir mean and variance: μg 
i j 
, σ g 

i j 
. In a similar way, μ f 

i j 
, σ f 

i j 
for fake
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Fig. 3. Architecture of the representation combination “SPMT + TFBD”. 
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aces are obtained. Mean and variance of inter-class difference are

enoted as μij , σ ij , calculated by all pairwise distances between

wo BM i, j in a real and a fake face respectively. Fisher ratio for

lock BM i, j is derived by: 

 i j = 

(μg 
i j 

+ μ f 
i j 

− μi j ) 
2 

σ g 
i j 

+ σ f 
i j 

− σi j 

(1) 

s can be seen, local neighborhood with small intra-class differ-

nce and large inter-class difference is more discriminative. 

After Fisher ratios of all BM i, j are calculated, bilinear interpola-

ion is applied to the Fisher ratio matrix, then we obtain a normal-

zed h f × w f Fisher face. 

.1.3. Low-Level descriptor and mid-level encoding 

After cropping facial region properly, we conduct low-level and

id-level encoding. We adopt a MSLBP operator to capture diverse

ppearance features with various scales, frequencies and orienta-

ions, illustrated as { LBP 8, 1 , LBP 8, 2 , LBP 8, 3 , LBP 8, 4 , LBP 16, 2 }. The

SLBP operator is applied to each pixel in F cr , obtaining MSLBP

eature face F mp , which is defined as our low-level texture descrip-

or. Each pixel in F mp is 48-bit long. 

Afterwards, we design a MSLBP codebook CB with a capacity

f N cb and use KD-tree generating algorithm to train this code-

ook. All positive and negative F mp in training set are used, but

nly a portion of pixels in each F mp are adopted for training. The

 -th texton in CB is notated as CB k , hence codebook is denoted as

 CB k |1 ≤ k ≤ N cb }. Each texton is 48-bit long. In our final settings,

 cb = 256 . 

Then the mid-level texture descriptor called BOVW (Bag of Vi-

ual Words) code face F bw 

is introduced. BOVW coding algorithm

n Eq. (2) is applied to each pixel in F mp , obtaining a h f × w f BOVW

ode face: 

 

(i, j) 
bw 

= arg min 

k 

|| F (i, j) 
mp − CB k || 2 (2) 

here 1 ≤ k ≤ N cb , F 
(i, j) 

bw 

denotes the BOVW code value at position

 i, j ) in F bw 

, F 
(i, j) 

mp denotes the 48-bit MSLBP feature vector at posi-

ion ( i, j ) in F mp . 
.1.4. Spatial pyramid and the first part of high-Level encoding 

Based on the mid-level texture descriptor and pre-trained

isher face, we conduct high-level encoding based on specifically

esigned spatial pyramid. Inspired by Spatial Pyramid Matching

51] , a high-level spatial pyramid coding algorithm is proposed. In

he classical spatial pyramid, the grid at level l has 2 l pieces along

ach spatial dimension. However this partitioning method is not

ppropriate for facial regions. If doing so, facial components will

e split chaotically and structure information will be lost. Hence

e design a specific spatial pyramid to partition the facial region,

reserving the symmetries of facial components. 

Level 0 of spatial pyramid represents the whole facial region.

t level 1, facial region is divided into 3 × 2 sub-regions. So sizes

f sub-regions at level 1 are { h f /4 × w f /2, h f /4 × w f /2, h f /2 × w f /2,

 f /2 × w f /2, h f /4 × w f /2, h f /4 × w f /2} respectively. From level 2, par-

itioning is as same as the traditional method. Let F s 
bw,l 

, F s 
f s,l 

denote

he s -th sub-region at level l in BOVW code face and Fisher face re-

pectively. 

The first part of high-level encoding is constructing BOVW his-

ograms for all sub-regions, which are weighted by Fisher face: 

H 

s 
l [ k ] = 

1 

| F s 
bw,l 

| 
∑ 

(i, j) ∈ F s 
bw,l 

F s, (i, j) 
f s,l 

I (F s, (i, j) 
bw,l 

= k ) (3) 

here 1 ≤ k ≤ N cb , I ( · ) is the indicator function, operator | · | counts

ixel numbers, BH 

s 
l 

denotes the weighted BOVW histogram of the

 -th subregion at level l . 

In our experiments, we construct two-level pyramids on both

 bw 

and F fs , hence 7 regions and 7 BOVW histograms are obtained

n total. 

.1.5. Class-Specific face and the second part of high-Level encoding 

Next, we will introduce the second part of high-level encod-

ng for SPMT descriptor, based on proposed class-specific face. The

lass-specific face F cs is defined to characterize intra-class similar-

ties. Genuine-specific face F cs, g characterizes the most common

OVW value at each position among genuine faces. Fake-specific

ace F cs, f can be interpreted in a similar way. For simplicity, we

enote all genuine faces and all fake faces in training set as �g 
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and �f respectively. The class-specific face is derived by: 

F (i, j) 
cs,γ = arg max 

k 

∑ 

q ∈ �γ

I ( F (i, j) 
bw 

q = k ) (4)

In Eq. (4) , 1 ≤ k ≤ N cb , γ = g or f . F 
(i, j) 

bw 

q 
denotes BOVW code at po-

sition ( i, j ) of the q -th sample among �γ . The two-level pyramid

is also applied on F cs, g and F cs, f , obtaining 7 regions each, denoted

as { F s 
cs,γ ,l 

} . 
We also define the positive matching-degree vector and nega-

tive matching-degree vector, in order to capture face’s similarities

with two class-specific faces. Similarities can be measured in all

sub-regions weighted by Fisher face. The matching degree vector

is derived by: 

M 

s 
γ ,l [ k ] = 

⎧ ⎨ 

⎩ 

1 f s l [ k ] = 0 && c s γ ,l [ k ] = 0 

min ( 
f s 
l 
[ k ] 

c s 
γ ,l 

[ k ] 
, 

c s 
γ ,l 

[ k ] 

f s 
l 
[ k ] 

) others 
(5)

where k ∈ [1, N cb ], l denotes the pyramid level, s denotes

the s -th subregion, γ = g or f indicates matching with gen-

uine or fake specific face, f s 
l 
[ k ] denotes occurrence fre-

quency of the k -th texton in facial region weighted by

Fisher ratio: f s 
l 
[ k ] = 

∑ 

(i, j) ∈ F s 
bw,l 

F 
s, (i, j) 
f s,l 

I (F 
s, (i, j) 

bw,l 
= k ) , c s 

γ ,l 
[ k ] de-

notes the corresponding frequency in class specific face:

c s 
γ ,l 

[ k ] = 

∑ 

(i, j) ∈ F s 
cs,γ ,l 

F 
s, (i, j) 
f s,l 

I (F 
s, (i, j) 

cs,γ ,l 
= k ) . 

Two matching-degree vectors are constructed for each subre-

gion and then normalized. Finally, we concatenate 7 BOVW his-

tograms and 14 matching-degree vectors from all sub-regions as

the SPMT descriptor. In our final settings, each SPMT feature vec-

tor is 5376 dimensional then it’s reduced to 1024 dimension by

PCA algorithm. 

3.2. SSD For face presentation attack detection 

3.2.1. Why we choose SSD 

SSD discretizes the output space of each feature map to con-

duct position regression for facial region. Those multiple feature

maps with varied resolutions and hierarchies naturally provide di-

verse semantical descriptions to conduct liveness judgement. The

pipeline for traditional presentation attack detection includes two

stages: firstly detect and crop facial region and then extract fea-

tures. However the pipeline for SSD based presentation attack de-

tection method is end-to-end. 

3.2.2. Task configuration 

Label 0 is assigned to anchor boxes that only contain back-

ground information. Label 1 and label 2 are assigned to anchor

boxes containing a real face and a fake face respectively. Then, SSD

converts the face presentation attack detection to a classical detec-

tion problem with three categories. 

In four datasets that we use, most images only contain one face.

For these images, liveness judgment is the label of output bound-

ing box after non-maximum suppression. However for those im-

ages containing multiple faces, more than one output bounding

boxes exist. Then we should manually check the liveness judg-

ments under this situation. 

3.2.3. Multi-Scale anchor boxes 

SSD arranges a set of anchor boxes with several fixed aspect ra-

tios and scales on each predicted layer. The scales of anchor boxes

can be calculated by: 

sc i = sc min + 

(i − 1) × (sc max − sc min ) 

max − 1 

(6)

where i ∈ [2 , max − 1] , max denotes amount of predicted layers,

sc min , sc i , sc max represent scales of anchor boxes at lowest, the i -th

and the highest predicted layer respectively. 
.2.4. Training samples selection 

In training set, anchor boxes with label 1 or 2 are “positive sam-

les”, negative training samples are the anchor boxes with label 0.

To obtain positive training samples, we firstly find the largest

verlapped anchor box with each ground truth. Afterwards we re-

ard an anchor box whose overlap ratio with any ground truth

s larger than a threshold (0.5), as a positive sample. All remain-

ng samples are regarded as potential negative training samples.

he hard negative mining strategy is utilized, in which those with

igher confidences are selected as negative training samples. The

atio between negative and positive training samples is 3:1 . 

.2.5. Data augmentation for training 

Powerful data augmentation strategy is utilized to enhance shift

nvariance and scale invariance. For each input image, cropping and

xpanding operations are used randomly, meanwhile overlap ratio

etween each cropped or expanded anchor box and corresponding

round truth should be larger than a threshold. Rotation operation

s adopted at a certain probability (0.5). 

.3. Decision-Level cascade strategy 

We define two kinds of uncertain facial bounding box. For the

rst kind, an output bounding box δ1 may be judged as a real face

ith a high confidence, however another bounding box δ2 which

as a large overlap ratio with δ1 is judged as a fake face also with

 high confidence. For the second kind, the detection confidence

f a bounding box δ3 is lower than a certainty threshold θ c after

MS. We call δ1 , δ2 , δ3 uncertain bounding boxes and correspond-

ng liveness judgments from SSD can not be used. In this situation,

PMT descriptor should be extracted from facial regions and the

utputs from SVM decide whether these faces are real or not. 

An certain facial bounding box always has a high confidence af-

er NMS. In this situation, liveness judgment from SSD can be used

irectly as the final decision because it’s reliable. 

The second uncertainty metric is adopted and θ c is tuned on

evelopment set ( θc = 0 . 92 ). Through the cascade strategy, SPMT

escriptor and SSD framework are demonstrated complementary,

ence the excellent performance is achieved. 

. Representation combination “SPMT + TFBD”

The pipeline is shown in Fig. 3 . Firstly TFBD feature is extracted

rom a binocular image pair. Each detected facial landmark is aug-

ented with the third dimension of relative depth, then it is trans-

ormed based on template face registration algorithm to match cor-

esponding landmark in template face. After several rounds of iter-

tive optimizations, TFBD descriptor is extracted. At the same time,

PMT feature is extracted from right image. Finally score fusion of

wo SVM outputs determines the classification result. In this sec-

ion, we mainly focus on introducing TFBD descriptor. Some sup-

lemental descriptions for SPMT and classification are also pro-

ided. 

.1. TFBD Feature 

.1.1. Basic setup 

Firstly we set up unparallel dual cameras then stereo calibration

s conducted. “Left image” and “right image” are obtained at the

ame time. We utilize the regressing local binary features [52] to

ocate N P (in this method N P = 68 ) facial landmarks and obtain

heir pixel coordinates in both left and right images. Point based

istortion correction algorithm is then applied to each landmark,

nd finally stereo rectification is conducted. 
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.1.2. Original landmark depth 

In the first place, the depth of all facial landmarks should be

alculated and some notations are defined as follows. R c is de-

ned as the rotation matrix and t c represents the translation vec-

or. M r = { f xr , c xr , f yr , c yr } and M l are defined as the intrinsic ma-

rices of right and left cameras respectively. p l = [ u l , v l , 1] T and

p r = [ u r , v r , 1] T are homogeneous pixel coordinates of a certain

andmark in left and right images respectively. The coordinate of

 certain landmark under right camera’s coordinate system is de-

oted as p rw 

= [ x rw 

, y rw 

, z rw 

, 1] T . An intermediate matrix M is de-

ned as M = M l [ 
R c t c 
0 T 1 

] . 

According to the pinhole camera model, the original depth of a

ertain facial landmark is calculated by: 

 rw 

= 

B 12 b 2 − B 22 b 1 
u r −c xr 

f xr 
(B 12 B 21 − B 11 B 22 ) + (B 12 B 23 − B 22 B 13 ) 

(7) 

here B 1 j = m 1 j − m 3 j u l , B 2 j = m 2 j − m 3 j v l , b 1 = m 34 u l − m 14 , b 2 =
 34 v l − m 24 and m ij represents the element at position ( i, j ) in ma-

rix M . 

.1.3. 3-D Abstract facial landmark and template face 

We define the 3-D abstract landmark based on the original fa-

ial landmark, which is very important for TFBD feature and regis-

ration operation. Each face can be represented by a set of N P ab-

tract landmarks: { p j | p j = [ x j , y j , d j ] 
T , 1 ≤ j ≤ N P } , where the first

nd the second dimensions are pixel coordinates and the third di-

ension denotes relative depth. As illustrated in the next section,

bstract landmarks are transformed in each registration round.

riginal abstract landmark p 1 
j 

is defined for the first-round reg-

stration, where x 1 
j 
, y 1 

j 
are pixel coordinate of the j -th landmark in

ight image and d 1 
j 

= z 
j 
rw 

− ( 
∑ 

j z 
j 
rw 

) /N P ( z 
j 
rw 

denotes original depth

f the j -th facial landmark). 

For both real and fake faces, intra-class difference of stereo

tructure is quite large due to various poses. Consequently a stan-

ard real face structure is needed: when the face is similar to this

tandard structure after a sort of transformation, the face is more

ikely to be a real face. We name this standard face as template

ace, which serves as a stereo structure benchmark for face pre-

entation attack detection, as shown in Fig. 4 . 

Template face is obtained before training. We sample N I im-

ge pairs from 5 different people, sitting with varied but moder-

te distance away from cameras. We set N I to 20 and distance to

50cm,60cm,70cm,80cm}. All cameras should be exactly opposite

o people’s faces when collecting image pairs for template face. As

hown in Fig. 4 , facial landmarks are located most precisely and

epth calculation is most accurate under this situation. 

Template face T is represented by a set of standard abstract

andmarks : { T j | T j = [ T x 
j 
, T 

y 
j 
, T d 

j 
] T , 1 ≤ j ≤ N P } . x 1 ,i 

j 
, y 1 ,i 

j 
are notated

s pixel coordinate of the j -th facial landmark in the i -th right pic-

ure among N I sampled pairs, and d 1 ,i 
j 

represents corresponding

riginal relative depth: 

 

x 
j = 

1 

N I 

N I ∑ 

i =1 

x 1 ,i 
j 

, T y 
j 

= 

1 

N I 

N I ∑ 

i =1 

y 1 ,i 
j 

, T d j = 

1 

N I 

N I ∑ 

i =1 

d 1 ,i 
j 

(8)

.1.4. Template face registration algorithm 

As mentioned above, a sort of transformation should be defined

or the original face, to match template face until the “closest” de-

ree. This transformation is named as template face registration. As

hown in Fig. 4 , matching error distribution is different among real

nd fake faces. Hence the TFBD descriptor will utilize this impor-

ant cue for classification. In a word, ideal registration transforma-

ion seeks for optimal parameters to obtain minimal registration
rror: 

rg min 

s F ,R F ,t F 

N P ∑ 

j=1 

‖ T j − s F R F × p j − t F ‖ 

2 
(9) 

here s F denotes scaling factor, p j denotes the j -th abstract land-

ark, R F and t F denote rotation matrix and translation vector for

bstract landmark. 

Solving the optimal parameter in Eq. (9) directly has poor ac-

uracy. Hence we propose a template face registration algorithm,

hich is based on unit quaternion absolute orientation method

roposed in [53] . We modify the algorithm in [53] and propose an

terative optimization method. Optimal parameters are estimated

y multiple rounds of iterative correction, rather than by single-

ound calculation. 

Single-round registration is defined as: 

p n +1 
j 

= s n F 
∗
R 

n 
F 

∗ × p n j + t n F 
∗

(10) 

here n ( n ≥ 1) represents the registration round and R n 
F 

∗
, s n 

F 
∗
, t n 

F 
∗

enote optimal parameters in the n -th round. Each abstract land-

ark p n 
j 

is transformed to p n +1 
j 

after the n -th registration round. 

Our point-based iteration method combines the iterative closest

oint (ICP) algorithm with bootstrapping. We design an abstract

andmark pool Po , then ( s n 
F 

∗
, R n 

F 
∗
, t n 

F 
∗) can be solved based on Po n 

the pool used in the n -th round). Each p n +1 
j 

is calculated accord-

ng to Eq. (10) , meanwhile N P registration errors in this round are

btained: e n 
j 
= ‖ T j − p n +1 

j 
‖ 2 . Then all errors are normalized. After-

ards we select N min abstract landmarks with minimal registration

rror to build Po n +1 for the next-round registration. 

We assign weight for each landmark in Po n +1 (n ≥ 1) to high-

ight the hard examples: 

 

n +1 
j 

= ln 

e n 
j 

1 − e n 
j 

(11) 

here 1 ≤ j ≤ N min , w 

n +1 
j 

denotes weight of the j -th landmark in

o n +1 . Afterwards all weights should be normalized. 

The N min landmarks in Po n +1 (n ≥ 1) has good statistical prop-

rties because of small registration errors. Meanwhile according to

he idea of bootstrapping, a landmark with a larger error should

e assigned with a higher weight for next-round registration. In

ur final settings, N min = 30 , Po 1 contains all N P original abstract

andmarks and w 

1 
j 
= 1 (1 ≤ j ≤ N P ). 

Then for the n -th registration round, we use the modified unit

uaternion based absolute orientation method to solve the follow-

ng problem: 

rg min 

s n 
F 
,R n 

F 
,t n 

F 

∑ 

p n 
j 
∈ Po n 

(w 

n 
j 
) 

2 ‖ T j − s n F R 

n 
F × p n 

j 
− t n F ‖ 

2 

(12) 

Firstly we define T 
′ 
j 

= w 

n 
j 
T j , p 

′ n 
j 

= w 

n 
j 
p n 

j 
. Considering t n 

F 
is same

or each landmark, we define t 
′ n 
F 

= w 

n 
j 
t n 
F 

to approximate the t n 
F 
,

here w 

n 
j 

denotes the average weight among { w 

n 
j 
} . Then Eq. (12) is

onverted to the standard form as Eq. (13) . 

arg min 

s n 
F 
,R n 

F 
,t 

′ n 
F 

∑ 

p n 
j 
∈ Po n 

‖ err j ‖ 

2 

s.t. err j = T 
′ 
j 
− s n F R 

n 
F × p 

′ n 
j 

− t 
′ n 
F 

(13) 

Next we denote T 
′ 
j 

and p 
′ n 
j 

as centroids of T 
′ 
j 

and p 
′ n 
j 

respec-

ively. We use the basic algorithm in [53] to solve Eq. (13) , then

 

n 
F 

∗ and t n 
F 

∗ are obtained: 

s n F 
∗ = 

∑ 

p n 
j 
∈ Po n 

(T 
′ 
j 
− T 

′ 
j 
) T · ( R 

n 
F 

∗ × (p 
′ n 
j 

− p 
′ n 
j 
)) 

∑ 

p n 
j 
∈ Po n 

‖ (p 
′ n 
j 

− p 
′ n 
j 
) ‖ 

2 
(14) 
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Fig. 4. (a) Examples of our dataset. (b) Description of template face and registration. (c) and (d) describe iterative registration errors. Generally genuine face can match the 

template face better with a lower error, which is a powerful cue for classification. All errors have been normalized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 Template Face Registration Algorithm. 

Input: 

N P original abstract landmarks: { p 1 
j 
| 1 ≤ j ≤ N P } 

Template face T = { T j | 1 ≤ j ≤ N P } 
Round index n = 1 , n max = 20 

Output: N P dimensional TFBD descriptor. 

1: Initialize landmark pool: Po 1 ← { p 1 
j 
} , w 

1 
j 
= 1 . 

2: while n ≤ n max do ¡¡¡¡

3: Based on Po n , solve ( s n 
F 

∗
, t n 

F 
∗
, R n 

F 
∗) according to the Eq. (12), 

(13), (14) and (15) 

4: p n +1 
j 

= s n 
F 

∗R n 
F 

∗ × p n 
j 
+ t n 

F 
∗, for 1 ≤ j ≤ N P 

5: e n 
j 
= ‖ T j − p n +1 

j 
‖ 2 , for 1 ≤ j ≤ N P 

6: Select N min landmarks with minimal errors 

7: Update Po n +1 with N min selected landmarks 

8: Update weight w 

n +1 
j 

according to Eq. (11) 

9: end while 

10: Concatenate { d n max +1 
j 

| 1 ≤ j ≤ N P } as TFBD descriptor 

r
 

f  

i

 

s  

p

t n F 
∗ = ( T 

′ 
j 
− s n F 

∗
R 

n 
F 

∗ × p 
′ n 
j 
) / w 

n 
j 

(15)

where ‘ · ’ represents the dot product operation. 

Finally, according to [53] , rotation matrix is equivalent to an

unit quaternion. Let q̊ ∗ = q 0 + iq x + yq y + kq z denote the optimal

unit quaternion. To solve q̊ ∗, we define a matrix Q = 

∑ 

p n 
j 
∈ Po n (p 

′ n 
j 

−
p 

′ n 
j 
) × (T 

′ 
j 
− T 

′ 
j 
) T and a 4 × 4 matrix Q 

′ 
. As illustrated in Section

4. A, p 7, [53] , Q 

′ = φ(Q ) where φ( · ) is a matrix transformation op-

erator, meanwhile q̊ ∗ equals to the eigenvector corresponding to

the maximal eigenvalue of matrix Q 

′ 
. Once q̊ ∗ is obtained, R n 

F 
∗ can

be solved by transforming q̊ ∗ according to Section 3. E, p 6, [53] . 

After n max registration rounds, N P transformed relative depth

from N P abstract landmarks are concatenated as N P dimensional

TFBD descriptor. In our final settings, n max = 20 and TFBD feature

is 68 dimensional. The overall template face registration algorithm

is illustrated in Algorithm 1 . 

4.2. Supplemental statements for SPMT and classification 

Facial region cropping method is different from Section 3 . A

face detector based on cascade detection method [54] is employed,

meanwhile two eyes are also located. Initially detected facial re-

gion can not be used directly because it always contains too much

background disturbances. Consistent with [36] , D eye is defined as

the pixel distance between two eyes, the width of cropped facial
egion W f is 1.6 D eye and the average of H f / W f ratio is 1.2. A H f × W f

acial region is then cropped. Finally it’s also resized to h f × w f as

n Section 3.1 . 

TFBD feature and SPMT feature are individually fed to corre-

ponding nonlinear SVM classifiers. Score fusion of two SVM out-

uts determines the classification result. 
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Table 1 

Compositions of our dataset. 

Our Dataset Genuine Spoofing 

Photo IPAD Cellphone 

Image pairs 60 0 0 30 0 0 1500 1500 

Subjects 15 30 15 15 

Our dataset is collected using two 640 × 480 web cameras. 
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Table 2 

Divisions of four datasets after decoding. 

Dataset NUAA CASIA REPLAY Ours 

Training Subjects 8 20 15 7 + 25 

Training Images (Pairs) 3491 45,0 0 0 93,0 0 0 5300 

Test Images (Pairs) 9150 57,0 0 0 124,0 0 0 6700 

Development Set Images N/A N/A 93,0 0 0 (15) N/A 

’N/A’ means that development set is not divided. 
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. Experiments 

.1. Datasets and decoding process 

Four datasets are used in our experiments, including three pub-

ic datasets: NUAA dataset [10] , CASIA dataset [55] and Replay-

tt ack dat aset [56] . As no binocular camera based dataset for face

resentation attack detection is publicly available, we construct our

wn dataset. 

.1.1. NUAA Dataset 

It contains 12,641 still images. Warped photos with different

izes serve as presentation attacks. 

.1.2. CASIA Dataset 

It contains 600 videos from 50 subjects in total and covers three

inds of attacks (photo, cut photo, video). For each subject, images

f real face and three attacks are captured under three image qual-

ties (low, normal and high qualities). Hence 12 videos are captured

or each subject. 

.1.3. Replay-Attack dataset 

Replay-Attack dataset contains 50 subjects and 1300 videos in

otal. For each subject, there are two kinds of shooting background

control and adverse), three kinds of attacks (print, digital photo

nd video), two attacking manners (fixed and hand-holding). 

.1.4. Our dataset 

Our dataset is consisted of binocular image pairs, sampled

ith two fixed and calibrated web cameras with resolution of

40 × 480. The distance between binocular camera is 12cm. As

hown in Table 1 , 15 people are invited, three kinds of presentation

ttack exist and 60 fake faces are collected in total. Each person is

equired to raise head, lower head, rotate face, sit with different

ositions and varied distance away from cameras. For each fake

ace, we move it horizontally, vertically, back and front, and ro-

ate it in depth, under different illumination conditions and varied

istance. Especially for those printed attacks, we also bend them

nward and outward. There are 12,0 0 0 image pairs in total. 

.1.5. Decoding videos into frames 

Considering our algorithms are conducted on single images

r image pairs, we use each frame in a video. This operation

s called “decoding the video”. Training, test and evaluation are

ll conducted on still images. CASIA and REPLAY-ATTACK datasets

eed to be decoded because they are composed of videos. CA-

IA dataset contains 102,0 0 0 frames and REPLAY-ATTACK contains

10,0 0 0 frames in total. 

.1.6. Dataset division 

Three public datasets are divided according to [10,55,56] . As

hown in Table 2 , ‘ 7 + 25 ’ denotes 7 real faces and 25 fake faces

re selected for training and ‘930 0 0(15)’ means that development

et of REPLAY-ATTACK contains 93,0 0 0 single images from 15 sub-

ects. 
.2. Performance measures 

To compare with previous works, we adopt Accuracy, Area Un-

er ROC Curve (AUC) [36] , Equal Error Rate (EER) [36] that cor-

esponds to the point where false rejection rate (FRR) is equal to

alse acceptance rate (FAR) in ROC curve, True positive rate (TPR)

hen FAR is 0.1 ( [6] ) and HTER [56] . 

Reporting PAD results using only HTER and EER can be biased.

ence to use standardised metrics for evaluation, we follow the

SO standard (ISO/IEC 30,107 [57] ) and report Attack Presentation

lassification Error Rate ( APCER ) and Bona Fide Presentation Clas-

ification Error Rate ( BPCER ). 

.3. Training and test protocols 

For representation combination “SPMT + SSD”, experiments are

onducted on three public datasets. However we can only conduct

xperiments on our dataset for “SPMT + TFBD”, because TFBD de-

criptor is extracted from a binocular image pair. 

We use LIBSVM [58] to train SVM. For TFBD feature, the cate-

ory of SVM is “ν-SVC” and RBF kernel is used, because TFBD de-

criptor is only 68 dimensional and RBF kernel is needed for high

imensional mapping. For SPMT feature, we also use “ν-SVC”. We

se 5-fold cross validation method to tune hyper-parameters and

etermine the classification thresholds. 

For SSD, we do not tune any hyper-parameters on development

et or by K-fold cross validation. All hyper-parameters of network

re set empirically, which may not be optimal. However networks

ith these parameters still achieve nearly perfect performance, re-

ealing the great robustness of SSD for presentation attack detec-

ion. 

.4. Experimental setup 

For two hand-crafted descriptors, all hyper-parameters in our

nal settings are described above. For SSD, the input image is

esized to 300 × 300 (500 × 500 for NUAA particularly). We use

onv6 _ 2, conv7 _ 2, conv8 _ 2 and conv9 _ 2 for prediction. sc min is set

o 0.2 and sc max is set to 0.9. We train the network for 20,0 0 0 it-

rations with a learning rate of 10 −2 , which is reduced to 10 −3 at

0,0 0 0 iterations and 10 −4 at 40,0 0 0 iterations. Batch size is 32.

e train and test models on a single NVIDIA Titan-X GPU. 

.5. Experiments of the representation combination “SPMT + SSD”

We conduct experiments on three public datasets. For CASIA

ataset, we consider seven scenarios including Low Quality (LQ),

ethodrate Quality (MQ), High Quality (HQ), Warped Photo (WP),

ut Photo(CP), Video Photo (VP) and Overall test according to the

rotocols in [55] . For REPLAY dataset, we consider seven scenar-

os including Prints, Mobile, Highdef IPAD (HD), Digital photo (DP),

hoto, Video and Overall test according to the protocols in [56] . For

ach scenario in CASIA and Replay-Attack datasets, we use corre-

ponding subset to train models then conduct evaluation. 
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Table 3 

Performance of the representation combination “SPMT + SSD” on NUAA dataset using frame 

based evaluation metric (Accuracy(%), EER(%), AUC). 

Other Descriptors Ours 

Metric Tan’s MSLBP Context Yang’s LBPnet SPMT SSD SPMT 

[10] [37] [46] [36] [44] + SSD 

Accuracy 88.15 92.76 97.13 97.78 98.20 98.05 99.00 99.16 

AUC 0.941 0.990 0.996 0.998 0.996 0.999 1.0 0 0 1.0 0 0 

EER 13.95 4.84 2.73 1.96 1.80 1.85 1.10 0.89 

Table 4 

Performance of the representation combination “SPMT + SSD” on CA- 

SIA dataset using frame based evaluation metric (APCER and BPCER). 

Our Descriptors 

Scenario Test Metric(%) SPMT SSD SPMT + 

Images SSD 

LQ 14.1k fake APCER 1.42 0.85 0.45 

4.6k real BPCER 1.56 0.58 0.34 

MQ 13.4k fake APCER 5.83 0.01 0.00 

4.3k real BPCER 5.01 0.00 0.00 

HQ 15.1k fake APCER 7.39 0.58 0.35 

4.9k real BPCER 3.55 0.27 0.20 

WP 16.9k fake APCER 8.11 0.75 0.56 

13.8k real BPCER 3.02 0.19 0.14 

CP 12.8k fake APCER 6.83 0.67 0.31 

13.8k real BPCER 2.52 0.12 0.09 

VP 13.4k fake APCER 1.50 0.11 0.05 

13.8k real BPCER 0.45 0.04 0.01 

Overall 43.1k fake APCER 10.67 0.16 0.10 

13.8k real BPCER 6.77 0.07 0.04 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Performance of representation combination “SPMT + SSD” on REPLAY- 

ATTACK dataset using frame based evaluation metric (APCER and 

BPCER). 

Our Descriptors 

Scenario Test Metric(%) SPMT SSD SPMT + 

Images SSD 

Print 18.8k fake APCER 6.91 0.04 0.00 

30.0k real BPCER 1.96 0.01 0.00 

Mobile 37.6k fake APCER 7.50 0.16 0.05 

30.0k real BPCER 3.64 0.04 0.03 

HD 37.6k fake APCER 10.99 0.01 0.01 

30.0k real BPCER 5.81 0.00 0.00 

Photo 56.4k fake APCER 8.50 0.17 0.06 

30.0k real BPCER 5.66 0.07 0.04 

DP 37.6k fake APCER 4.97 0.13 0.10 

30.0k real BPCER 4.74 0.05 0.03 

Video 37.6k fake APCER 6.38 1.19 1.07 

30.0k real BPCER 2.97 0.42 0.27 

Overall 94.0k fake APCER 9.43 0.09 0.04 

30.0k real BPCER 8.14 0.08 0.03 

Table 6 

Comparisons between the “SPMT + SSD” and state-of-the-art meth- 

ods on CASIA/REPLAY-ATTACK benchmarks using frame based eval- 

uation metric. 

Method REPLAY CASIA Speed 

HTER EER EER TPR(%) fps 

(%) (%) (%) FAR = 0.1 

LBP + LDA [23] 19.62 18.25 21.01 75.7 5.2 

IQA [59] 15.23 - 32.46 - - 

CDD [36] 10.32 9.75 11.85 88.8 2.5 

SPMT 9.85 9.37 11.29 88.5 1.5 

Dynamic [14] 7.65 6.76 10.00 89.1 - 

IDA [6] 7.41 - 12.97 86.7 3.8 

IQM [60] 5.23 - - - - 

Person [8] 3.62 1.55 1.63 - - 

Color [7] 2.81 0.42 2.17 - - 

CNN [25] 2.75 - 6.27 - - 

SpoofNet [26] 0.75 - - - 69.0 

SSD 0.09 0.07 0.08 100.0 120.0 

SPMT + SSD 0.06 0.04 0.04 100.0 45.5 

- The value is not provided in corresponding paper. 

S  

p  

p  

n

 

i  

(  

w

 

s  

i  

p

5.5.1. Evaluation of SPMT descriptor 

Results on NUAA dataset . We make comparisons with four tra-

ditional methods, including a re-image theory based method [10] ,

a contextual cue based method [46] and two micro-texture based

methods [36,37] . MSLBP [37] is a state-of-the-art low-level descrip-

tor and Yang’s component dependent descriptor [36] is a state-of-

the-art mid-level descriptor. As shown in Table 3 , our SPMT feature

outperforms other traditional descriptors in the literature. We also

compare with a convolutional neural network based method [44] .

Our SPMT descriptor is slightly worse than deep texture descriptor

from LBPnet [44] . 

Results on CASIA dataset . As most state-of-the-art methods

don’t report APCER and BPCER for seven scenarios, we only report

the performance of our methods, as shown in Table 4 . The per-

formance for low quality (LQ) is better than higher quality (HQ).

This result is expected because fake faces with high-quality usu-

ally contain less artifacts. Video presentation attacks are easy to

classify due to the inevitable downsize of high-resolution. 

Results on REPLAY-ATTACK dataset . In Table 5 , an APCER of

9.4% and a BPCER of 8.3% are obtained on the whole test set, which

demonstrates the effectiveness of our spatial pyramid encoding al-

gorithm. However as shown in Table 6 , our SPMT doesn’t achieve

state-of-the-art performance due to the local feature’s limitations. 

Discussion . Our SPMT descriptor focuses on encoding local

micro-texture and the results reveal that SPMT outperforms other

local descriptors in the term of representation capability. 

5.5.2. Evaluation of SSD 

Results . Images from NUAA dataset are resized to 500 × 500 for

training because NUAA training set contains only 3400 images. Us-

ing larger images for training can ease the problem of overfitting. 

For CASIA and REPLAY-ATTACK datasets, the size of 300 × 300

is adopted for training because training set is large enough.

300 × 300 model is 2.4 times faster than 500 × 500 model. As

shown in Table 4 and 5 , the APCER on total test is 0.16% for CA-
IA and 0.09% for REPLAY-ATTACK respectively, which already out-

erform other methods significantly. But there’s still room for im-

rovement, because SSD mainly utilizes global context cues while

eglects local features in the facial region. 

Comparisons with other deep learning based methods . We

ndividually compare SSD with deep learning based PAD methods

 [25,26] ). As shown in Table 6 , SSD outperforms other deep net-

orks on CASIA and REPLAY-ATTACK datasets significantly. 

Discussion . As can be seen from Table 3 , SSD doesn’t achieve

uch amazing performance on NUAA dataset, because training set

s too small, data diversity is limited and the image quality is quite

oor. 
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Fig. 5. DET curves of the representation combination “SPMT + SSD” on NUAA, CASIA and REPLAY-ATTACK datasets. 
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Table 7 

Comparisons of micro-texture descriptors on our dataset. 

Metric DOG Tan’s MSLBP Context Yang’s SPMT 

[55] [10] [37] [46] [36] (Ours) 

Accuracy(%) 83.72 85.85 89.47 92.16 94.71 94.83 

AUC 0.849 0.871 0.917 0.958 0.975 0.978 

EER(%) 16.13 14.23 12.91 8.47 6.15 6.02 

Table 8 

Performance of the combination “SPMT + TFBD” on our 

dataset. 

Operator Original TFBD SPMT SPMT + 

depth feature feature TFBD 

APCER(%) 22.21 10.28 8.11 5.95 

BPCER(%) 7.12 4.18 2.34 2.05 

EER(%) 14.35 8.12 6.02 3.53 
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.5.3. Evaluation of the combination “SPMT + SSD”

Results . As shown in Tables 3, 4 and 5 , our proposed face

AD method achieves accuracies of more than 99% on all datasets

nd scenarios. The first representation combination “SPMT + SSD”

chieves the best performance on NUAA dataset, outperforming

he deep texture model LBPnet [44] . On CASIA and REPLAY-ATTACK

atasets, the overall APCER and BPCER are lower than 0.1%, demon-

trating the effectiveness of proposed representation combination

or 2D face PAD problem. We also present DET curves in Fig. 5 . As

an be seen, performance on single dataset is excellent. 

Discussion . Our micro-texture descriptor is highly complemen-

ary with deep network SSD, hence local features in the facial re-

ion and context cues of the scene can be both utilized. Also the

roposed decision-level cascade strategy provides double insurance

or face PAD task. 

.5.4. Comparisons with the state-of-the-Art methods 

NUAA dataset is not considered in this section because few

tate-of-the-art methods report experimental results on it. As most

tate-of-the-art methods don’t report the standardised metrics as

able 4 , we use HTER, EER and TPR to compare different PAD

ethods on CASIA and REPLAY-ATTACK datasets. In Table 6 , based

n frame based evaluation metric, the representation combination

SPMT + SSD” for face PAD outperforms other state-of-the-art meth-

ds. There are only 50 wrongly judged images in CASIA and 49

rongly judged images in REPLAY-ATTACK dataset. 

.5.5. Computation cost analysis 

The speed of each method reported in Table 6 is tested on CA-

IA dataset and the image resolution is 480 × 640. For SPMT, we

se a modified cascade detector [61] from Matlab Toolbox to de-

ect face and the speed is 0.08s. Then SPMT descriptor is extracted

nd the speed is 0.58 s. Hence the total time is 0.66s per image

1.5 fps). For end-to-end SSD, the system runs at 120 fps without

roposals. For “SPMT + SSD”, SSD is cascaded with SPMT descrip-

or when uncertain judgements appear. Uncertain judgements are

uite rare but they still slow down the whole system to 45.5 fps

n average. 

SPMT is tested on a CPU with 32 GB memory and SSD is tested

n a NVIDIA Titan-X GPU. “SPMT + SSD” runs on both CPU and GPU.

poofNet [26] is tested on a NVIDIA TITAN GPU while LBP [23] ,

DD [36] and IDA [6] are tested on a modern CPU. 

.6. Experiments of the representation combination “SPMT + TFBD”

.6.1. Performance of SPMT on our dataset 

The results are shown in Table 7 . The performance of all de-

criptors is worse than their performance on NUAA dataset, but

ur SPMT still outperforms others. It’s not surprising because our

ataset is more challenging than NUAA because of different head

oses and distance during collection. When face is rotated or far

way from camera, it is difficult to locate facial region accurately
nd more background disturbances are included. In order to reduce

he sensitivity, binocular depth feature should also be utilized. 

.6.2. Experiments of TFBD feature and the combination 

SPMT + TFBD”

Results shown in Table 8 reveal that original depth feature is

omewhat discriminative, however when face is increasingly far

rom cameras, relative depth difference between different land-

arks is reduced. Performance also becomes worse when face

n front of camera is rotated due to the inaccurate landmark lo-

ations. After matched with template face, normalized binocular

epth feature can reflect the face stereo structure. The obvious de-

line in APCER and BPCER proves the effectiveness of TFBD feature.

ut TFBD feature is sensitive to some presentation attacks which

re very similar to real faces. Hence SPMT feature is introduced

nd effectiveness is proved by the APCER of 8.11%. However, limita-

ion also exists when there are too much background disturbances

r image quality is high. Hence we combine TFBD descriptor with

PMT descriptor eventually. As can be seen, APCER finally drops to

.95% and EER drops to 3.53. Score fusion ratio is 1: 1. 

.7. Aggregate dataset experiments 

In prior work [7,14,27] , when conducting cross-dataset experi-

ents, the model is trained on one dataset and then test on other

atasets. In a degree, it’s not meaningful because the generaliza-

ion ability should be proved in real applications under various

ituations, rather than measured on a single dataset. Both train-

ng and test data should be diverse enough to mimic real scenar-

os. In addition, convolutional neural networks own powerful fit-

ing abilities. Advantages of deep networks will be wasted if only

ne dataset is adopted for training. 

Hence to demonstrate the generalization ability of our proposed

epresentation combination “SPMT + SSD” for face PAD, we conduct
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Table 9 

Aggregate dataset experiments. 

Train Test Method HTER(%) APCER(%) BPCER(%) 

On All NUAA SPMT 9.43 11.61 5.45 

Three SSD 0.78 1.10 0.51 

Public SPMT + SSD 0.72 1.04 0.43 

Datasets REPLAY SPMT 14.27 13.08 9.35 

SSD 0.07 0.08 0.05 

SPMT + SSD 0.05 0.04 0.04 

CASIA SPMT 15.36 15.10 12.35 

SSD 0.28 0.35 0.29 

SPMT + SSD 0.25 0.30 0.26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aggregate dataset experiments, as shown in Table 9 . SPMT, SSD

and “SPMT + SSD” are trained on three public datasets, which are

then used for evaluation. We randomly select 10,0 0 0 real faces and

10,0 0 0 fake faces from three datasets to train aggregate dataset

models. Aggregate dataset performance of SSD and the combina-

tion “SPMT + SSD” on CASIA dataset is worse than single dataset

performance ( Table 4 ). It is acceptable because SSD’s fitting abil-

ity is too powerful for a single dataset. Excellent aggregate dataset

results on three benchmarks prove that any feature representation

under any scenario can be learned by cascading deep network with

our local descriptor SPMT. 

6. Conclusion and future work 

In today’s biometric authentication systems, diverse threats of

presentation attacks are increasing. In order to obtain robust solu-

tions for face PAD, two kinds of discriminative representation com-

binations are proposed in this paper. The first combination incor-

porates local appearance features, along with global context cues

from deep networks. The complementarity between SPMT descrip-

tor and SSD framework, as well as the proposed decision-level cas-

cade strategy, make the combination very effective for preventing

2D presentation attacks. Excellent experimental results on single-

dataset and aggregate-dataset, especially the APCER which is lower

than 0.1%, demonstrate its effectiveness and generalization ability.

The second combination cooperates binocular depth information

with appearance features. The proposed template face registration

method can effectively characterize the difference of stereo struc-

tures between real faces and presentation attacks. After incorpo-

rating with multi-scale texture features, the sensitivity to stereo

structures of presentation attacks is alleviated. As only a binocular

camera is needed, the PAD system with TFBD and SPMT descriptors

is an effective and cost-efficient alternative in real face recognition

applications. 

In future work, other advanced convolutional neural networks

will be investigated for face PAD algorithms. In addition, we also

consider to incorporate TFBD and SPMT descriptors into deep net-

works for joint training, to obtain the deep fused representations

from unified model. It will be a future direction to achieve a so-

phisticated PAD system. 
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